Intro to SIMD Programming

High Level: Distributed Computing

- separate computers working in parallel
- distributed memory
- MPI, Legion, MapReduce

Mid Level: Thread-level Parallelism

- separate threads working in parallel
- shared memory
- pthreads, OpenMP, TBB

Low Level: SIMD

- Single Instruction Multiple Data
- {128, 256, 512} bit registers
- SSE, AVX, NEON instructions

This was the first image result for SIMD?

Low Level: SIMD

- Single Instruction Multiple Data
- {128, 256, 512} bit registers
- SSE, AVX, NEON instructions

- 1.
- 2.
- 3.
- 4.

- 2.
- 3.
- 4.

1. I want to make my code faster

- 3.
- 4.

1. I want to make my code faster

2. I want to make my code faster

- 1. I want to make my code faster
- 2. I want to make my code faster
- 3. I want to make my code faster
- 4.

- 1. I want to make my code faster
- 2. I want to make my code faster
- 3. I want to make my code faster
- 4. I want to make my code faster

```
void square(float values[16]) {
  for (int i = 0; i < 16; i++) {
    values[i] = values[i] * values[i];
  }
}</pre>
```

xmm: 128-bit ym

compiled with -O3

1	<pre>square(float*):</pre>	
2	movups	xmm0, XMMWORD PTR [rdi]
3	mulps	xmm0, xmm0
4	movups	XMMWORD PTR [rdi], xmm0
5	movups	<pre>xmm0, XMMWORD PTR [rdi+16]</pre>
6	mulps	xmm0, xmm0
7	movups	XMMWORD PTR [rdi+16], xmm0
8	movups	<pre>xmm0, XMMWORD PTR [rdi+32]</pre>
9	mulps	xmm0, xmm0
10	movups	XMMWORD PTR [rdi+32], xmm0
11	movups	<pre>xmm0, XMMWORD PTR [rdi+48]</pre>
12	mulps	xmm0, xmm0
13	movups	XMMWORD PTR [rdi+48], xmm0
14	ret	

ymm: 256-bit

zmm: 512-bit

- automatic vectorization doesn't work reliably
 - no warnings / explanations if things don't vectorize
- automatic vectorization doesn't generate optimal code
 - e.g. emits 128-bit or 256-bit instructions* for AVX512 machine

- wait, if the compiler already vectorizes my code automatically,
 - why would I ever vectorize my code manually?

In practice, (at the time of writing this):

8

9

```
1
                                              2
                                              3
void square(float values[16]) {
                                              4
  for (int i = 0; i < 16; i++) {</pre>
    values[i] = values[i] * values[i];
                                              5
                                              6
                                              7
```

xmm: 128-bit

gcc13, compiled with -O3 -ffast-math -march=skylake-avx512 -ftree-vectorize

\sim	<pre>square(float*):</pre>	
	vmovups	<pre>ymm0, YMMWORD PTR [rdi]</pre>
	vmulps	ymm0, ymm0, ymm0
	vmovups	YMMWORD PTR [rdi], ymm0
	vmovups	<pre>ymm0, YMMWORD PTR [rdi+32]</pre>
	vmulps	ymm0, ymm0, ymm0
	vmovups	YMMWORD PTR [rdi+32], ymm0
	vzeroup	per
	ret	

ymm: 256-bit

zmm: 512-bit

Upsides:

- Almost zero effort
- Okay performance

Downsides:

- Unreliable
- Okay performance
- Unclear why it doesn't work

SIMD Strategy: OpenMP #pragma

```
void square(float values[16]) {
    #pragma omp simd
    for (int i = 0; i < 16; i++) {
        values[i] = values[i] * values[i];
    }
}</pre>
```

1	\sim	<pre>square(float*):</pre>	
2		vmovups	<pre>ymm0, YMMWORD PTR [rdi]</pre>
3		vmulps	ymm0, ymm0, ymm0
4		vmovups	YMMWORD PTR [rdi], ymm0
5		vmovups	<pre>ymm0, YMMWORD PTR [rdi+32]</pre>
б		vmulps	ymm0, ymm0, ymm0
7		vmovups	YMMWORD PTR [rdi+32], ymm0
8		vzeroup	per
9		ret	

same assembly as automatic vectorization

SIMD Strategy: OpenMP #pragma

3 V n	orf∩r	mance in	nrovemen	t from	
УΡ	CHON	nance m	provenien		
າa	omp	simd			

same assembly as automatic vectorization

Conceptually (for AVX):

- #include <immintrin.h>
- Replace calculations by their associated intrinsics:
 - __m128 __mm_add_ps(__m128 a, __m128 b)
 - __m128 __mm_mul_ps(__m128 a, __m128 b)

Conceptually (for AVX):

- #include <immintrin.h> which kind of operation • Replace calculations by their associated intrinsics: ___m128 __mm_add_ps(__m128 a, __m128 b)
 - ___m128 __mm_mul_ps(__m128 a, __m128 b) single precision

128-bit vector of floats

```
void square(float values[16]) {
  for (int i = 0; i < 16; i++) {
    values[i] = values[i] * values[i];
 }
```

```
void square SIMD(float values[16]) {
  for (int i = 0; i < 4; i++) {
    \_m128 f = mm_loadu_ps(values + 4 * i);
   f = _mm_mul_ps(f, f);
    _mm_storeu_ps(values + 4 * i, f);
```

https://godbolt.org/z/58nxdodT1

```
void square_SIMD(float values[16]) {
  for (int i = 0; i < 4; i++) {
    __m128 f = _mm_loadu_ps(values + 4 * i);
    f = _mm_mul_ps(f, f);
    _mm_storeu_ps(values + 4 * i, f);
  }
}</pre>
```

xmm: 128-bit ym

15	square_SIMD(floa	at*):
16	movups	<pre>xmm0, XMMWORD PTR [rdi]</pre>
17	mulps	xmm0, xmm0
18	movups	XMMWORD PTR [rdi], xmm0
19	movups	<pre>xmm0, XMMWORD PTR [rdi+16]</pre>
20	mulps	xmm0, xmm0
21	movups	XMMWORD PTR [rdi+16], xmm0
22	movups	<pre>xmm0, XMMWORD PTR [rdi+32]</pre>
23	mulps	xmm0, xmm0
24	movups	XMMWORD PTR [rdi+32], xmm0
25	movups	<pre>xmm0, XMMWORD PTR [rdi+48]</pre>
26	mulps	xmm0, xmm0
27	movups	XMMWORD PTR [rdi+48], xmm0
28	ret	

ymm: 256-bit

zmm: 512-bit

Upsides:

- Control / Performance
- No additional dependencies

Downsides:

- Not portable (AVX, SSE, NEON, ...)
- Unreadable
- Invasive refactoring
- Really low-level
- Conditional Expressions

Upsides:

- Control / Performance
- No additional dependencies

These are addressable by an appropriate abstraction Downsides:

- Not portable (AVX, SSE, NEON, ...)
- Unreadable
- Invasive refactoring
- Really low-level
- Conditional Expressions

Many options:

- p12tic/libsimdpp
- ermig1979/Simd
- google/highway
- mitsuba-renderer/enoki

Most are portable, expose operator overloads, ... Look for one with the features your project needs

std::experimental::simd (parallelism TS v2)

https://github.com/mitsuba-renderer/enoki

was the best-looking option I tried:

- easy to use
- wonderful documentation

```
#include "enoki/array.h"
void square(enoki::Array<float, 16> & values) {
 values = values * values;
```

performant implementations of math functions

square(enoki::Array<float, 16ul>&): vmovaps zmm0, ZMMWORD PTR [rdi] vmulps zmm0, zmm0, zmm0 vmovaps ZMMWORD PTR [rdi], zmm0 vzeroupper ret

A more realistic example of a SIMD refactor with enoki:

https://github.com/samuelpmish/material_benchmarks/blob/main/src/J2_plasticity.cpp

A more realistic example of a SIMD refactor with enoki:

https://github.com/samuelpmish/material_benchmarks/blob/main/src/J2_plasticity.cpp

cd /path/to/material_benchmarks/assembly \$./x86_simd_report.sh J2_plasticity_scalar_x86.s 128-bit instructions: 451 256-bit instructions: 29 512-bit instructions: 0 \$./x86_simd_report.sh J2_plasticity_simd_x86.s 128-bit instructions: 1 256-bit instructions: 0 512-bit instructions: 467

- Adapting straight-line code to use a SIMD library is doable, but what about conditional branching?
 - float z = sin(x) * y;if (z > 2.0) { z = 1.0;

Conditional Expressions

- Adapting straight-line code to use a SIMD library is doable, but what about conditional branching?
 - float z = sin(x) * y;if (z > 2.0) { z -= 1.0;
 - How can we stop all the lanes from evaluating the conditional statements?

Conditional Expressions

Adapting straight-line code to use a SIMD library is doable, but what about conditional branching?

z[z > 2.0] -= 1.0;masked operations

Conditional Expressions

enoki::Array<float,8> z = sin(x) * y;

Adapting straight-line code to use a SIMD library is doable, but what about conditional branching?

enoki::Array<float,8> z = sin(x) * y; z[z > 2.0] -= 1.0;

Conditional Expressions

masked operations are *okay*, but still require code modification

Unfortunately, I believe the answer is "no", due to fundamental limitations of C++

Conditional Expressions

Is there a cleaner way to handle conditionals in a SIMD context?

- Flexible SIMD width
- Supports different underlying hardware
- Conditional masking is handled automatically
- Many calculations are compatible with existing C++

Conditional Expressions

- *However*, there is a "new" LLVM-based tool that extends
- the C++ language to allow for a simpler way to write SIMD code

- Flexible SIMD width (warp size)
- Supports different underlying hardware (PTX)
- Conditional masking is handled automatically (vectorization at runtime)
- Many calculations are compatible with existing C_{++} (SPMD)

Conditional Expressions

- *However*, there is a "new" LLVM-based tool that extends
- the C++ language to allow for a simpler way to write SIMD code

GLSL, released in 2001 CUDA C++, released in 2007

Calculation	Skylake-X (512-bit)	Raptor-Lake (256-bit)	M1 (128-bit)
axpy	no data	1.1x	1.01x
Neohookean	2.4x	1.6x	1.0x
J2 Plasticity	2.5x	1.9x	1.9x

Speedup, relative to original implementation

Calculation	Skylake-X (512-bit)	Raptor-Lake (256-bit)	M1 (128-bit)
axpy	no data	1.1x ?!	1.01x ?!
Neohookean	2.4x	1.6x	1.0x ?!
J2 Plasticity	2.5x	1.9x	1.9x

Speedup, relative to original implementation

Arithmetic intensity: (# floating point ops) / (# of bytes moved)

compute-bound vs. memory-bound

Arithmetic intensity: (# floating point ops) / (# of bytes moved)

compute-bound vs. memory-bound

SIMD isn't helpful for memory-bound kernels!

Is it worth the effort?

unless

- 1. you know your code has a compute-heavy bottleneck
- 2. that bottleneck is a calculation running on the CPU
- 3. application performance is absolutely critical
- 4. you're prepared to pay the costs to write / maintain the SIMD parts

In most cases, I'd say: no

Is it worth the effort?

unless

- 1. you know your code has a compute-heavy bottleneck
- 2. that bottleneck is a calculation running on the CPU
- 3. application performance is absolutely critical
- 4. you're prepared to pay the costs to write / maintain the SIMD parts

In most cases, I'd say: no

A good SIMD library helps mitigate the costs in (4), but there is still a significant amount of work to refactor/maintain.

Summary

- Working with intrinsics directly is awful
- Auto vectorization is helpful, but insufficient
- There are a lot of good SIMD libraries
 - BUT, they still require some refactoring (esp. conditionals)
 - When does std::simd arrive, if ever?
- SIMD is only useful for compute-bound kernels!
- The return on investment with SIMD isn't very high (at most 2-4x)
 - more bang/buck with other optimizations (algorithm, threading, etc) Only pursue SIMD optimizations last

Thanks!