
Intro to SIMD Programming

Parallelism Hierarchy

High Level: Distributed Computing

• separate computers working in parallel

• distributed memory

• MPI, Legion, MapReduce

Parallelism Hierarchy

Mid Level: Thread-level Parallelism

• separate threads working in parallel

• shared memory

• pthreads, OpenMP, TBB

Parallelism Hierarchy

Low Level: SIMD

• Single Instruction Multiple Data

• {128, 256, 512} bit registers

• SSE, AVX, NEON instructions

This was the first image result for SIMD?

Parallelism Hierarchy

Low Level: SIMD

• Single Instruction Multiple Data

• {128, 256, 512} bit registers

• SSE, AVX, NEON instructions

Why should I care?

1.

2.

3.

4.

Why should I care?

1. I want to make my code faster

2.

3.

4.

Why should I care?

1. I want to make my code faster

2. I want to make my code faster

3.

4.

Why should I care?

1. I want to make my code faster

2. I want to make my code faster

3. I want to make my code faster

4.

Why should I care?

1. I want to make my code faster

2. I want to make my code faster

3. I want to make my code faster

4. I want to make my code faster

SIMD Strategy: Auto vectorization
compiled with -O3

xmm: 128-bit ymm: 256-bit zmm: 512-bit

void square(float values[16]) {
 for (int i = 0; i < 16; i++) {
 values[i] = values[i] * values[i];
 }
}

SIMD Strategy: Auto vectorization
wait, if the compiler already vectorizes my code automatically,

why would I ever vectorize my code manually?

In practice, (at the time of writing this):

• automatic vectorization doesn't work reliably

• no warnings / explanations if things don't vectorize

• automatic vectorization doesn't generate optimal code

• e.g. emits 128-bit or 256-bit instructions* for AVX512 machine

SIMD Strategy: Auto vectorization

void square(float values[16]) {
 for (int i = 0; i < 16; i++) {
 values[i] = values[i] * values[i];
 }
}

gcc13, compiled with -O3

-ffast-math -march=skylake-avx512 -ftree-vectorize

xmm: 128-bit ymm: 256-bit zmm: 512-bit

SIMD Strategy: Auto vectorization

Downsides:

• Unreliable

• Okay performance

• Unclear why it doesn't work

Upsides:

• Almost zero effort

• Okay performance

SIMD Strategy: OpenMP #pragma

same assembly as automatic vectorization

void square(float values[16]) {
 #pragma omp simd
 for (int i = 0; i < 16; i++) {
 values[i] = values[i] * values[i];
 }
}

SIMD Strategy: OpenMP #pragma

void square(float values[16]) {
 #pragma omp simd
 for (int i = 0; i < 16; i++) {
 values[i] = values[i] * values[i];
 }
}

same assembly as automatic vectorization

In my tests, I never saw any performance improvement from

#pragma omp simd

Conceptually (for AVX):

• #include <immintrin.h>

• Replace calculations by their associated intrinsics:

• __m128 _mm_add_ps(__m128 a, __m128 b)

• __m128 _mm_mul_ps(__m128 a, __m128 b)

SIMD Strategy: Intrinsics

Conceptually (for AVX):

• #include <immintrin.h>

• Replace calculations by their associated intrinsics:

• __m128 _mm_add_ps(__m128 a, __m128 b)

• __m128 _mm_mul_ps(__m128 a, __m128 b)

SIMD Strategy: Intrinsics

single precision 128-bit vector of floats

which kind of operation

SIMD Strategy: Intrinsics

https://godbolt.org/z/58nxdodT1

void square(float values[16]) {
 for (int i = 0; i < 16; i++) {
 values[i] = values[i] * values[i];
 }
}

void square_SIMD(float values[16]) {
 for (int i = 0; i < 4; i++) {
 __m128 f = _mm_loadu_ps(values + 4 * i);
 f = _mm_mul_ps(f, f);
 _mm_storeu_ps(values + 4 * i, f);
 }
}

https://godbolt.org/z/58nxdodT1

SIMD Strategy: Intrinsics

void square_SIMD(float values[16]) {
 for (int i = 0; i < 4; i++) {
 __m128 f = _mm_loadu_ps(values + 4 * i);
 f = _mm_mul_ps(f, f);
 _mm_storeu_ps(values + 4 * i, f);
 }
}

xmm: 128-bit ymm: 256-bit zmm: 512-bit

SIMD Strategy: Intrinsics
Downsides:

• Not portable (AVX, SSE, NEON, ...)

• Unreadable

• Invasive refactoring

• Really low-level

• Conditional Expressions

Upsides:

• Control / Performance

• No additional dependencies

SIMD Strategy: Intrinsics
Upsides:

• Control / Performance

• No additional dependencies

Downsides:

• Not portable (AVX, SSE, NEON, ...)
• Unreadable

• Invasive refactoring

• Really low-level

• Conditional Expressions

These are addressable by
an appropriate abstraction

SIMD Strategy: Use a library
Many options:

• p12tic/libsimdpp

• ermig1979/Simd

• google/highway

• mitsuba-renderer/enoki

• std::experimental::simd (parallelism TS v2)

Most are portable, expose operator overloads, ...

Look for one with the features your project needs

SIMD Strategy: Use a library

#include "enoki/array.h"

void square(enoki::Array<float, 16> & values) {
 values = values * values;
}

https://github.com/mitsuba-renderer/enoki

was the best-looking option I tried:

• easy to use

• performant implementations of math functions

• wonderful documentation

https://github.com/mitsuba-renderer/enoki

SIMD Strategy: Use a library
A more realistic example of a SIMD refactor with enoki:

https://github.com/samuelpmish/material_benchmarks/blob/main/src/J2_plasticity.cpp

https://github.com/samuelpmish/material_benchmarks/blob/main/src/J2_plasticity.cpp

SIMD Strategy: Use a library
A more realistic example of a SIMD refactor with enoki:

https://github.com/samuelpmish/material_benchmarks/blob/main/src/J2_plasticity.cpp

cd /path/to/material_benchmarks/assembly
$./x86_simd_report.sh J2_plasticity_scalar_x86.s
128-bit instructions: 451
256-bit instructions: 29
512-bit instructions: 0
$./x86_simd_report.sh J2_plasticity_simd_x86.s
128-bit instructions: 1
256-bit instructions: 0
512-bit instructions: 467

https://github.com/samuelpmish/material_benchmarks/blob/main/src/J2_plasticity.cpp

Conditional Expressions
Adapting straight-line code to use a SIMD library is doable,

but what about conditional branching?

float z = sin(x) * y;
if (z > 2.0) {
 z -= 1.0;
}

Conditional Expressions
Adapting straight-line code to use a SIMD library is doable,

but what about conditional branching?

float z = sin(x) * y;
if (z > 2.0) {
 z -= 1.0;
}

How can we stop all the lanes from

evaluating the conditional statements?

Conditional Expressions
Adapting straight-line code to use a SIMD library is doable,

but what about conditional branching?

enoki::Array<float,8> z = sin(x) * y;
z[z > 2.0] -= 1.0;

masked operations

Conditional Expressions
Adapting straight-line code to use a SIMD library is doable,

but what about conditional branching?

enoki::Array<float,8> z = sin(x) * y;
z[z > 2.0] -= 1.0;

masked operations are okay, but still require code modification

Conditional Expressions

Is there a cleaner way to handle conditionals in a SIMD context?

Unfortunately, I believe the answer is "no",

due to fundamental limitations of C++

Conditional Expressions
However, there is a "new" LLVM-based tool that extends

the C++ language to allow for a simpler way to write SIMD code

• Flexible SIMD width

• Supports different underlying hardware

• Conditional masking is handled automatically

• Many calculations are compatible with existing C++

Conditional Expressions
However, there is a "new" LLVM-based tool that extends

the C++ language to allow for a simpler way to write SIMD code

• Flexible SIMD width (warp size)

• Supports different underlying hardware (PTX)

• Conditional masking is handled automatically (vectorization at runtime)

• Many calculations are compatible with existing C++ (SPMD)

CUDA C++, released in 2007
GLSL, released in 2001

Some Performance Numbers

Calculation Skylake-X
(512-bit)

Raptor-Lake
(256-bit)

M1
(128-bit)

axpy no data 1.1x 1.01x

Neohookean 2.4x 1.6x 1.0x

J2 Plasticity 2.5x 1.9x 1.9x

Speedup, relative to original implementation

Some Performance Numbers

Calculation Skylake-X
(512-bit)

Raptor-Lake
(256-bit)

M1
(128-bit)

axpy no data 1.1x 1.01x

Neohookean 2.4x 1.6x 1.0x

J2 Plasticity 2.5x 1.9x 1.9x

Speedup, relative to original implementation

?! ?!
?!

Some Performance Numbers

Arithmetic intensity: (# floating point ops) / (# of bytes moved)

compute-bound vs. memory-bound

Some Performance Numbers

Arithmetic intensity: (# floating point ops) / (# of bytes moved)

compute-bound vs. memory-bound

SIMD isn't helpful for memory-bound kernels!

Is it worth the effort?
In most cases, I'd say: no

unless

1. you know your code has a compute-heavy bottleneck

2. that bottleneck is a calculation running on the CPU

3. application performance is absolutely critical

4. you're prepared to pay the costs to write / maintain the SIMD parts

Is it worth the effort?
In most cases, I'd say: no

A good SIMD library helps mitigate the costs in (4),

but there is still a significant amount of work to refactor/maintain.

unless

1. you know your code has a compute-heavy bottleneck

2. that bottleneck is a calculation running on the CPU

3. application performance is absolutely critical

4. you're prepared to pay the costs to write / maintain the SIMD parts

Summary
• Working with intrinsics directly is awful

• Auto vectorization is helpful, but insufficient

• There are a lot of good SIMD libraries

• BUT, they still require some refactoring (esp. conditionals)

• When does std::simd arrive, if ever?

• SIMD is only useful for compute-bound kernels!

• The return on investment with SIMD isn't very high (at most 2-4x)

• more bang/buck with other optimizations (algorithm, threading, etc)

• Only pursue SIMD optimizations last

Thanks!

