Intro to SIMD Programming

Parallelism Hierarchy

High Level: Distributed Computing

* separate computers working in parallel
e distributed memory

 MPI, Legion, MapReduce

,"J"J‘I'-p’ ol . O b
e - " -
R A A Nt Al S S S,

TSN AR W \s\p\'@\%ﬁs‘%
-

ety
.

8 SANND N A
e S e e
S LR e e e
LN RN RS
e s

Parallelism Hierarchy

Mid Level: Thread-level Parallelism

* separate threads working in parallel

* shared memory

e pthreads, OpenMP, TBB

Parallelism Hierarchy

Low Level: SIMD SIMD Instruction pool

-
C

e Single Instruction Multiple Data

-
C

» {128, 256, 512} bit registers

e SSE, AVX, NEON instructions

-
-

Data pool
zlalzle
-
Vector unit

This was the first image result for SIMD?

Parallelism Hierarchy

Low Level: SIMD

e Single Instruction Multiple Data
e {128, 256, 512} bit registers

e SSE, AVX, NEON instructions

Why should | care?

1.
2.
3.
4.

Why should | care?

1. | want to make my code faster
2.
3.

4.

Why should | care?

1. | want to make my code faster
2. | want to make my code faster
3.

4.

Why should | care?

1. | want to make my code faster
2. | want to make my code faster

3. | want to make my code faster

4.

Why should | care?

1. | want to make my code faster
2. | want to make my code faster
3. | want to make my code faster

4. | want to make my code faster

SIMD Strategy: Auto vectorization

compiled with -O3

1 square(float¥*):
2 movups xmm0, XMMWORD PTR [rdi]
3 mulps xmmO0, XmmO
4 movups XMMWORD PTR [rdi], xmmO
5 movups xmm0, XMMWORD PTR [rdi+16]
volid square(float wvalues[16]) { 6 mulps’ zm0, xmm0
for (int l =07 1< 1§; 1++) | _ 7 movups XMMWORD PTR [rdi+16], XmmO
values[1] = values[1] * values[1]; 8 movups xmm0, XMMWORD PTR [rdi+32]
; 9 mulps xmm0, XmmO
’ 10 movups XMMWORD PTR [rdi+32], xmmO
11 movups xmm0, XMMWORD PTR [rdi+48]
12 mulps xmmO0, XmmO
13 movups XMMWORD PTR [rdi+48], xmmO
14 ret

xmm: 128-bit ymm: 256-bit zmm: 512-bit

SIMD Strategy: Auto vectorization

wait, if the compiler already vectorizes my code automatically,

why would | ever vectorize my code manually?

In practice, (at the time of writing this):
* automatic vectorization doesn't work reliably
* no warnings / explanations if things don't vectorize
* automatic vectorization doesn't generate optimal code
e e.g. emits 128-bit or 256-bit instructions™ for AVX512 machine

SIMD Strategy: Auto vectorization

gcc13, compiled with -O3
-ffast-math -march=skylake-avx512 -ftree-vectorize

Vv square(float¥*):
vmovups ymmO, YMMWORD PTR [rdi]
vmulps ymm0O, ymmO, ymmO
vmovups YMMWORD PTR [rdi], ymmO

1

2

volid square(float wvalues[16]) { >

for (int 1 = 0; 1 < 16; 1++) { 4
values[1] = values[1] * values[1]; 5 vmovups ymm0O, YMMWORD PTR [rdi+32]

' 6

; 7

8

9

vmulps ymm0O, ymmO, ymmO
vmovups YMMWORD PTR [rdi+32], ymmO
vzeroupper

ret

xmm: 128-bit ymm: 256-bit zmm: 512-bit

SIMD Strategy: Auto vectorization

Upsides: Downsides:
 Almost zero effort e Unreliable
» Okay performance » Okay performance

 Unclear why it doesn't work

SIMD Strategy: OpenMP #pragma

volid square(float values[1l6]) {
#pragma omp simd
for (int i = 0; i < 16; i++) {
values[1] = values[1] * values[1i];
}
}

O 0O J & O & W N =

Vv square(float*):

vmovups ymm(0, YMMWORD PTR [rdi]
vmulps ymm0O, ymmO, ymmO

vmovups YMMWORD PTR [rdi], ymmO
vmovups ymm0O, YMMWORD PTR [rdi+32]
vmulps ymm0O, ymmO, ymmO

vmovups YMMWORD PTR [rdi+32], ymmO
vzeroupper

ret

same assembly as automatic vectorization

SIMD Strategy: OpenMP #pragma

In my tests, | never saw any performance improvement from

#pragma omp simd

SIMD Strategy: Intrinsics

Conceptually (for AVX):

e #include <immintrin.h>

* Replace calculations by their associated intrinsics:
e m128 _mm_add_ps(__ mi128 a, _ m128 b)

e m128 _mm_mul_ps(__ m128 a, __m128 b)

SIMD Strategy: Intrinsics

which kind of operation

. m128 _mm_add_ps(_mi128a __m128 b)

* __m128 _mm_mul_ps(_m128 a, _ m128 b)

single precision 128—bit vector of floats

SIMD Strategy: Intrinsics

vold square(float values[1l6]) { volid square SIMD(float values[16]) {
for (int i = 0; i < 16; i++) { for (int 1 = 0; 1 < 4; 1++) {
values[1] = values[1] * values[1]; - ml28 £ = mm loadu ps(values + 4 * 1);
} f = mm mul ps(f, f);
} _mm storeu ps(values + 4 * 1, f);
}
}

https://godbolt.org/z/58nxdodT1

https://godbolt.org/z/58nxdodT1

vold square SIMD(float values[16]) {

for (int 1 =

}

ml28 £ =

~mm storeu ps(values + 4 * 1, f);

SIMD Strategy: Intrinsics

15 square SIMD(float¥*):

0; 1 < 4; 1i++) {

16
17
18
19
20

_ _mm_loadu_ps(values + 4 * i); 54
f = mm mul ps(f, £f);

xmm: 128-bit

22
23
24
25
26
277
28

ymm: 256-bit

movups
mulps
movups
movups
mulps
movups
movups
mulps
movups
movups
mulps
movups

ret

xmm0, XMMWORD PTR [rdi]
Xxmm0O, xXmmO

XMMWORD PTR [rdi], xmmO
xmm0, XMMWORD PTR [rdi+16]
XxmmO, xXmmoO

XMMWORD PTR [rdi+16], xmmO
xmm0, XMMWORD PTR [rdi+32]
Xxmm0O, xXmmO

XMMWORD PTR [rdi+32], xmmO
xmm0, XMMWORD PTR [rdi+48]
Xxmm0O, xXmmO

XMMWORD PTR [rdi+48], xmmO

zmm: 512-bit

SIMD Strategy: Intrinsics

Upsides: Downsides:
e Control / Performance Not portable (AVX, SSE, NEON, ...)
 No additional dependencies Unreadable

* |nvasive refactoring
* Really low-level
e Conditional Expressions

SIMD Strategy: Intrinsics

Upsides: Downsides:
e Control / Performance * Not portable (AVX, SSE, NEON, ...)
 No additional dependencies h Unreadable

"9 Invasive refactoring

These are addressable by« * Really low-level

an appropriate abstraction » Conditional Expressions

SIMD Strategy: Use a library

Many options:

e p12tic/libsimdpp

e ermig1979/Simd

* google/highway

* mitsuba-renderer/enoki

e std::experimental::simd (parallelism TS v2)

Most are portable, expose operator overloads, ...
Look for one with the features your project needs

SIMD Strategy: Use a library

https://github.com/mitsuba-renderer/enoki

was the best-looking option | tried:

e easy to use
e performant implementations of math functions
e wonderful documentation

square(enoki: :Array<float, 1l6ul>&):
#include "enoki/array.h" vmovaps zmm0O, ZMMWORD PTR [rdi]
vmulps zmm0O, zmmO, zmmO

vold square(enoki::Array<float, 16> & values) { vmovaps ZMMWORD PTR [rdi], zmmO
’

values = values * wvalues;
) vzeroupper

ret

https://github.com/mitsuba-renderer/enoki

SIMD Strategy: Use a library

A more realistic example of a SIMD refactor with enoki:

https://github.com/samuelpmish/material benchmarks/blob/main/src/J2 plasticity.cpp

https://github.com/samuelpmish/material_benchmarks/blob/main/src/J2_plasticity.cpp

SIMD Strategy: Use a library

A more realistic example of a SIMD refactor with enoki:

https://github.com/samuelpmish/material benchmarks/blob/main/src/J2 plasticity.cpp

cd /path/to/material benchmarks/assembly

$./x86 simd report.sh J2 plasticity scalar x86.s
128-bit instructions: 451

256-bit instructions: 29

512-bit instructions: 0

S ./x86 simd report.sh J2 plasticity simd x86.s
128-bit instructions: 1

256-bit instructions: 0

512-bit instructions: 467

https://github.com/samuelpmish/material_benchmarks/blob/main/src/J2_plasticity.cpp

Conditional Expressions

Adapting straight-line code to use a SIMD library is doable,
but what about conditional branching?

Z = sin(x) * y;
if (z > 2.0) {
= 1.0;

® 4

Conditional Expressions

Adapting straight-line code to use a SIMD library is doable,
but what about conditional branching?

float z = sin(x) * y;
if (z > 2.0) {
z —= 1.0;

}

How can we stop all the lanes from
evaluating the conditional statements?

Conditional Expressions

Adapting straight-line code to use a SIMD library is doable,
but what about conditional branching?

enoki::Array<float,8> z = sin(x) * vy;
z[z > 2.0] == 1.0;

masked operations

Conditional Expressions

Adapting straight-line code to use a SIMD library is doable,
but what about conditional branching?

enoki::Array<float,8> z = sin(x) * vy;
z[z > 2.0] == 1.0;

masked operations are okay, but still require code modification

Conditional Expressions

Is there a cleaner way to handle conditionals in a SIMD context?

Unfortunately, | believe the answer is "no”,
due to fundamental limitations of C++

Conditional Expressions

However, there is a "new" LLVM-based tool that extends
the C++ language to allow for a simpler way to write SIMD code

e Flexible SIMD width

e Supports different underlying hardware

e Conditional masking is handled automatically
 Many calculations are compatible with existing C++

Conditional Expressions

However, there is a "new" LLVM-based tool that extends
the C++ language to allow for a simpler way to write SIMD code

Flexible SIMD width (warp size)

Supports different underlying hardware (P TX)

Conditional masking is handled automatically (vectorization at runtime)
Many calculations are compatible with existing C++ (SPMD)

GLSL, released in 2001
CUDA C++, released in 2007

Some Performance Numbers

Speedup, relative to original implementation

Skylake Raptor Lake

2.4X 1.6X 1.OX
J2 Plasticity 2 5x 1.9x 1.9x

Some Performance Numbers

Speedup, relative to original implementation

: Skylake-X Raptor-Lake

J2 Plasticity 2 5x 1.9x 1.9x

Some Performance Numbers

Arithmetic intensity: (# floating point ops) / (# of bytes moved)

compute-bound vs. memory-bound

Some Performance Numbers

Arithmetic intensity: (# floating point ops) / (# of bytes moved)
compute-bound vs. memory-bound

SIMD isn't helpful for memory-bound kernels!

Is it worth the effort?

In most cases, I'd say: no

unless

1. you know your code has a compute-heavy bottleneck

2. that bottleneck is a calculation running on the CPU

3. application performance is absolutely critical

4. you're prepared to pay the costs to write / maintain the SIMD parts

Is it worth the effort?

In most cases, I'd say: no

unless

1. you know your code has a compute-heavy bottleneck

2. that bottleneck is a calculation running on the CPU

3. application performance is absolutely critical

4. you're prepared to pay the costs to write / maintain the SIMD parts

A good SIMD library helps mitigate the costs in (4),
but there is still a significant amount of work to refactor/maintain.

Summary

Working with intrinsics directly is awful

Auto vectorization is helpful, but insufficient

There are a lot of good SIMD libraries

 BUT, they still require some refactoring (esp. conditionals)

e When does std::simd arrive, if ever?

SIMD is only useful for compute-bound kernels!

The return on investment with SIMD isn't very high (at most 2-4x)
 more bang/buck with other optimizations (algorithm, threading, etc)
e Only pursue SIMD optimizations last

